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ABSTRACT 

This report provides results of a study of the application to software-defined 

radios (SDR) of the Maestro 49-tile Radiation-Hard-by-Design multi-processor chip 

developed by Boeing Corporation for the U.S. Government using DARPA-developed 

radiation-hard chip technology. The heart of the pipeline SDR architecture is an 

implementation of single-precision floating-point pipeline FFT. The details of the 

software architecture to achieve the pipeline operation are presented. The performance of 

N-point FFTs for N = 128, 256, 512, 1024, and 2048 is reported as number of processor 

tiles is increased. Maximum FFT throughput achieved for a 2048-point FFT is 27 million 

samples per second when 20 of the 49 available tiles are used for separate FFT blocks, 

one tile is used for input data distribution, and one tile is used for output data collection. 

The performance of the complete SDR is projected based upon the FFT experiments. 
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I. INTRODUCTION  

A. PROBLEM STATEMENT 
The work reported in this Technical Report was supported by the Secretary of the 

Air Force as a result of a proposal submitted in September of 2011. [1] 

 

1. Specific Tasks Originally Proposed 

• We will develop algorithms for demonstration of the Maestro chip in space-based 
[Software Defined Radio] SDR applications. We will produce MAESTRO-
development-board based demonstration of fundamental SDR processes, such as 
fast Fourier transforms (FFTs), finite impulse response (FIR) filters, forward error 
corrections encoders and decoders, and synchronization algorithms. If a 
MAESTRO development board is unavailable, we will make use of our Tilera 64-
core development board. 

• We will investigate the application of our previously developed SDR application 
to the [Single Event Immune Reconfigurable FPGA] SIRF-developed RHBD 
Virtex-5 chip. 

2. Structure of Funded Work 
The proposed work was funded in two annual increments, distributing the original 

requested funding over the two years, FY 2012 and FY 2013. Period of performance of 

the FY2013 increment was extended to 12/31/13.  

 

B. BACKGROUND 
Software defined radios (SDR) consist of a radio frequency front end (RFFE), 

data converters (analog to digital and digital to analog converters), and reconfigurable 

digital hardware.  The modulation and encoding (for a transmitter) and the demodulation 

and decoding (for a receiver) are performed by the reconfigurable digital hardware which 

can be a microprocessor, a digital signal processor (DSP), a field programmable gate 

array (FPGA), or some combination of these.  Since the modulation and coding are 

determined by the program that the microprocessor or DSP runs or the program that 

configures the FPGA, these radios are called software defined radios (SDRs).  SDRs are 

reprogrammable, allowing them to transmit and receive any communications signal, 

provided the RFFE can accommodate the frequencies involved, the data converter has 
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sufficient sample rate and dynamic range, and the reconfigurable digital hardware has 

sufficient processing capability. 

 Radiation in space poses a considerable threat to modern microelectronic devices, 

in particular to the high-performance low-cost computing capability we enjoy on earth. 

These threats apply as well to the processors one would employ implementing SDRs in 

space. These effects can be categorized as long-term permanent faults called total dose 

effects and transient temporary effects called single event upsets (SEU). [2] 

 Total dose effects must be mitigated by semiconductor manufacturing process 

modification, or by selecting and testing parts to meet the total dose requirements of the 

planned mission.  Single event upsets are more difficult to prevent in modern, high-speed, 

small-feature-size devices. So, while total-dose radiation-tolerant modern processors and 

FPGAs are available, most modern current generation processors are very susceptible to 

SEUs [2].  

 Two notable exceptions to this generalization have emerged recently. The U.S. 

Government has been sponsoring the OPERA project through which the Boeing Corp. 

has produced a Radiation-Hard by Design (RHBD) 49-core (tile)1 multiprocessor chip 

(MAESTRO) based on the architecture of the Tilera Corp. 64-tile chip [3]. This chip is 

being made available to U.S. Government space computing applications. It has been 

demonstrated at a U.S. Government sponsored Industry Day 9/29-9/30/2010 [4]. The 

other is a project sponsored by the Air Force Research Lab for Xilinx Corp. to develop a 

RHBD version of its Virtex-5 Field Programmable Gate Array (FPGA) chip [5].  

 It has long been understood that replication of logic with voting circuitry can be 

used to improve the reliability of digital systems in the presence of transient errors in the 

logic, such as SEUs. [2] [6] We at the Naval Postgraduate School (NPS) have been 

engaged in a project to build an evaluation board for a Triple Modular Redundant (TMR) 

implementation of a RISC processor to validate the TMR architecture for employment in 

a high-SEU environment. This evaluation board has evolved to a dual-FPGA processor 

called the Configurable Fault-Tolerant Processor (CFTP). The research has led us to the 

conclusion that the TMR architecture is an effective one to enhance the resistance of a 

11  CCoorree  iiss  tthhee  mmoorree  ccoommmmoonnllyy--uusseedd  tteerrmm  ffoorr  aa  pprroocceessssoorr  oonn  aa  mmuullttii--pprroocceessssoorr  cchhiipp..  
TTiilleerraa  CCoorrpp..  uusseess  tthhee  ssyynnoonnyymm  ttiillee  iinn  iittss  lliitteerraattuurree  aanndd  aass  ppaarrtt  ooff  iittss  nnaammee..  
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processor to SEUs so that the computer could operate reliably in the hostile environment 

of low earth orbit. [7]  

 The NPS is conducting research and education programs in SDR, including thesis 

research in SDR design of transceivers for IEEE 802.11 wireless LANs, IEEE 802.16 

wireless MANs, and IS-95B and cdma2000 mobile telephony, and the course EC4530 

Soft Radio.  This work includes software defined radios consistent with the Software 

Communications Architecture (SCA), microprocessor-based SDRs, and most recently 

FPGA-based SDR design.  The Naval Postgraduate School’s Communications Research 

Laboratory is equipped for SDR design with eight software defined radio design stations 

including programming design environments, RFFEs, and microprocessor and FPGA 

modules. 

 SDRs are a natural fit for satellite applications because they can be changed via 

reprogramming after launch, thereby allowing new functionality and/or design 

improvement at any time in the spacecraft’s lifecycle.  It is expected this will make the 

satellite more useful over its lifespan including more operationally responsive.  

Furthermore, a single SDR can receive multiple dissimilar communications signals 

simultaneously and be reconfigured to receive different signals at different times – for 

example, different signals over different areas of the world. 

 The Naval Postgraduate School is currently at work on a project to design the 

software for a fault tolerant SDR suitable for hardware (FPGAs) already on orbit.  The 

proposed SDR will process pre-demodulated signals in order to compress the signals for 

potential passing to the downlink.  It is presumed that the downlink does not have 

sufficient bandwidth to pass the entire pre-demodulated signal.  The compression 

algorithm will be configurable by ground operators who will set signal power thresholds 

for frequency ranges and time durations of interest.  The compression will be 

accomplished by passing only those frequency ranges-time durations of the signal that 

exceed the relevant power threshold.  The basic SDR design has been proven by Wright  

[8] and further refined by Livingston [9]. The FPGA configuration is being made fault 

tolerant by applying the methods learned in this research program and will be tested on 

the Algorithmic WorkStation (AWS) prior to being tested on an on-orbit FPGA. 
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 A key component of this SDR is a high-speed pipeline Fast Fourier Transform 

(FFT) unit.  We have had an earlier research effort on the realization of high-speed, 

pipelined FFTs. It developed the architecture for a high-speed pipelined signal processor 

for the computation of the Cyclic Spectrum [10] of which the principal component is an 

FFT processor.  

A recent thesis has developed the realization of a Radix-4 64-point real-time FFT 

implemented and simulated in a Virtex-II FPGA [11]. This design was implemented with 

both TMR and RPR fault-amelioration techniques and showed a modest improvement in 

resource utilization of the RPR technique over TMR. Unfortunately, the fault-tolerant 

FFTs were not available in time for testing last summer in the UC Davis cyclotron. 

 The NPS investigators also have experience with the multi-core processor 

architecture that is exploited in the Boeing-developed MAESTRO chip. We have 

investigated ways to enhance the designed-in RHBD technology of the chip [12]. We 

have looked into ways to utilize the multi-core architecture for the implementation of 

SDRs and some particular SIGINT algorithms. 

 The NPS investigators have also had some hands-on experience with the Tilera 

processor on which the MAESTRO is based.  At the time we investigated how we might 

implement highly reliable, high-speed implementations of encryption and hashing 

algorithms utilizing the pipelined architecture available on the Tilera.  We investigated 

how to take advantage of the allocations of specific portions of the chip to specific 

functions, i.e. how the chip design supports physical redundancy and where there might 

be potential single points of failure.  We compared this architecture to the Cell 

Broadband Engine, a different multi-core approach.  Although we did not do a complete 

implementation of the encryption algorithms on the Tilera, our analysis indicated that its 

speed for hashing and encryption would be roughly comparable that of the Cell with 

possibly greater resistance to hardware failure. 

Based on this experience with the implementation of high-speed pipelined 

processors and the design of high-performance reliable processors for the space 

environment, we have studied the use of the Maestro RHBD multi-core processor for the 

implementation of a SDR to perform data compression on broad-band pre-demodulated 

signals. 
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C. REPORT ORGANIZATION 
In Chapter II, the architecture of the pipelined SDR is developed and techniques 

for the implementation of the pipelined FFT on Maestro are developed. Chapter III 

presents the design of the Maestro-Development-Board hosted experiments and the 

results of the experiments. Finally, conclusions and recommendations for future research 

and development efforts are the topic of Chapter IV. 
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II. PIPELINED SDR ARCHITECTURE 

A. SPECIFIC PRE-D DATA COMPRESSION SDR 
 

The basic SDR that was the motivation and implementation target for the research 

was developed in master’s theses by Livingston [9], Wright [8], and Humberd [13]. The 

radio would monitor a band of the RF spectrum of bandwidth B. It would convert that 

band-limited portion of the RF to digital samples at a sample rate, sf , such that  2sf B>

, the Nyquist rate. Then, the SDR computes N-point FFTs of each successive N-point 

block of input data samples. For each N-point block of complex frequency data, the 

magnitudes of all the positive frequency components are computed. Then, the frequency 

indices of each magnitude that exceeds a specified threshold [and in a specified 

frequency sub-band] are identified and the corresponding complex-frequency values are 

reported. Figure 1 Illustrates how this works. The left-hand panel shows the magnitude of 

the FFT versus time. A block of five time-units worth of data is transformed at a time. 

The SDR is looking for significant signal components, i.e., data above the “blue-contour” 

magnitude, while ignoring weak signal components. The magnitudes exceed the 

threshold in the red-boxed areas in the spectrum diagram. The right-hand panel of the 

figure shows the frequency components of the compressed signal. Only those 

components in the red boxes are outputted, as frequency index and complex amplitude. 

 
Figure 1. Basic Concept of SDR (After [8]) 
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If this SDR were placed in a satellite, then the selected frequency components 

would be downlinked with a block identifier. Ground processing can reconstruct the 

significant components of the signal by performing the inverse FFT on the selected 

frequency components, block-by-block. 

The frequency resolution of the SDR is simply N, the block size of the FFT, so the 

potential compression ratio will be N/k for blocks with k FFT indices with power greater 

than the threshold. For blocks with less signal power, no frequency components are 

downlinked achieving an infinite compression ratio, although probably null blocks should 

have their time stamp downlinked. 

Figure 2 shows the block diagram of the computational processes that are required 

to implement the SDR. It is desired that these processes be implemented in real time with 

sample rates in the tens of megahertz. Two basic ways to accomplish this goal would be: 

1. By use of a FPGA or Application-Specific Integrated Circuit (ASIC) 

implementing pipeline versions of the major processor sub-blocks of 

Figure 2. 

2. By use of a multi-processor to compute separate N-point blocks of 

selected frequency components in parallel. 
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Figure 2. Block Diagram of Wright's SDR (After [8]) 

The use of parallel processors to do the computation relies on the fact that each N-

point FFT is independent of the others. So, as long as the blocks are time stamped, the 

computation of Figure 2 can be carried out in a different processor with the selected 

frequency-component blocks with their time stamp reassembled at the output. This latter 

approach is the one that would be suitable for implementation of the SDR on a multi-core 

processor such as Maestro.  

 

 

B. MAESTRO FFT ARCHITECTURES 
The basic Maestro multi-core architecture is shown in Figure 3. The architecture 

of Maestro uses the intellectual property of the Tilera Corporation for its 64-core 

commercial architecture. This architecture was purchased by the U.S. Government for 

royalty-free use by the Government in space applications. The Boeing Corporation was 

contracted by the Government to produce a 49-core RHBD chip, incorporating the basic 

Tilera architecture and adding an IEEE-standard floating-point co-processor to each core. 

N-point 
digitized RF 

sample blocks

Computation of N-point block
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Frequency 

components time-
origin identified

High throughput achieved by computing 
individual blocks in parallel
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Tilera refers to its cores as tiles so we will use the term tile, which corresponds to the 

usage in Tilera documentation.  

 
 

Figure 3. Maestro 49-core MIPS Processor Architecture [14]. 

1. Maestro SDR Architecture 
Figure 4 shows the basic architecture of the planned multi-core architecture of the 

Maestro program to compute the real-time spectrum of the incoming sampled data 

stream, select the components whose power exceeds a given threshold, and then output 

the time index of the N-sample block and the frequency indices and complex magnitudes 

of the spectrum. 
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Figure 4. Real-Time Basic Pipeline FFT Architecture as Applied to SDR 

The first tile in the process, the source tile, converts each 12-bit sample into a 32-

bit IEEE standard floating-point number and places the samples into p successive N-word 

buffers. As each N-word buffer is filled, the source signals the associated FFT-select tile, 

“Ready to Send a Block.”  

Each of those p tiles performs the following operations: 

• It waits for that “ready-to-send” signal and when received, initiates a 

direct-memory-access (DMA) transfer of the block of data with time 

stamp into the empty half of the input ping-pong buffer. 

• It checks if the output ping-pong buffer is available and if it is, 

o Computes the FFT of the full half of the input ping-pong buffer; 

o tests the magnitude of the power in each positive-frequency 

component of the spectrum; 

o Loads the time stamp, number of components exceeding threshold,  

frequency indices and their complex amplitudes into the empty 

half of the output ping-pong buffer; 

o Signals the output is available to the output tile. 

The sink tile then performs the following operations: 

• It waits for a signal from any of the p FFT-compute tiles, “ready to send”; 

• It initiates a DMA transfer of the data block from that tile; 

• It sends that data off chip. 
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Programming of the Maestro chip to exploit the parallelism displayed in Figure 4 

is a very difficult process. The programmer must explicitly manage the data transfer 

DMA operations between tiles, manage the ping-pong data buffering, as well as provide 

computationally efficient processes to compute the FFTs and test for the significant 

frequency components. Because of this complexity, it was decided to first implement a 

simplified parallel algorithm to develop the techniques for distributing the data and to 

exploit powerful FFT algorithms developed by others. 

2. FFT Program Used for FFT Tiles 
 The FFT program used in the tests reported here is a version of the FFTW 

(“Fastest Fourier Transform in the West”) algorithm reported by Singh, et al. [14] In that 

paper, the authors describe their adaptation of the FFTW algorithm to the Maestro chip 

and their simulation studies of the performances with various sizes of FFT on Maestro 

and their extrapolation of multi-tile performance. They calculated a net Floating Point 

Operations (FLOPs) per clock cycle for a variety on FFT sizes. These results are 

summarized in Table 1. 

Table 1. FLOPs per Clock Cycle for Various FFT Sizes (after [14]) 

FFT size 64 256 1024 2048 4096 
Flops/Cycle [14] 0.51 0.5 0.33 0.41 0.35 

FLOPs/FFT 1920 10,240 51,200 112,640 245,760 
Single-tile sf   65.95 10×   64.38 10×  62.31 10×  62.61 10×  62.04 10×  

p-Tile sf  65.95 10 p×   64.38 10 p×  62.31 10 p×  62.61 10 p×  62.04 10 p×  
 

We analyzed the results from [14] to obtain a digital sample rate or throughput for 

a multi-tile FFTW implementation on Maestro. Based upon a number of real FLOPs per 

FFT of 2logN N , we estimate a single-tile sample rate achievable by their FFTW also 

shown in Table 1.  Assuming no data distribution overhead in the operation of p FFT tiles 

in parallel operating on different blocks, the sample rate should scale linearly with p, as 

shown in the final row of Table 1. This final estimate gives us an upper bound on the 

sample rate achievable from a p-tile parallel pipeline implementation of the ISI FFTW in 

accordance with the structure shown in Figure 5.  

This upper bound suggests that a 20-tile pipelined FFT could achieve real-time 

FFT operating at a sample rate of 52 Mega-samples per second or less.  
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In the next chapter, we discuss the details of our experiment to obtain a real-time 

pipeline FFT and to verify the operation of our pipeline SDR architecture. Finally, it 

presents the results of the performance experiments. 
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III. MAESTRO-BASED FFT EXPERIMENTS 

A. PIPELINE FFT IMPLEMENTATIONS 
The process illustrated in Figure 4 that the FFT-select tile performs has two basic 

components, the calculation of an N-point floating-point FFT and the selection of the 

frequency components to downlink. The FFT has a computational requirement of 

25 logFFTC N N=  real floating point operations, whereas the selection portion of the 

algorithm has 3
2s
NC =  flops plus 

2
N  integer comparisons. (See Section D. for further 

discussion of these complexity figures.) The dominant computational requirement comes 

from the FFT, and hence it was decided that the most important process to implement 

would be the multi-tile pipeline FFT. The structure of that pipeline real-time FFT process 

is shown in Figure 5. This is very similar to the pipeline SDR architecture shown in 

Figure 4; the selection portion of each tile’s process has been removed. 

 
Figure 5. Real-Time Pipeline FFT Architecture 

The operation of the pipeline FFT architecture is very similar to that of the SDR 

architecture; only the selection process has been eliminated. The first tile in the process, 

the source tile, converts each 12-bit sample into a 32-bit IEEE standard floating-point 

number and places the samples into p successive N-word buffers. As each N-word buffer 

is filled, the source signals the associated FFT-select tile, “Ready to Send a Block.”  
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We used the system interfaces to the underlying tile-to-tile communications 

functions provided in the MAESTRO “ilib” library and the “tmc” library functions to 

allocate memory shared among processes.  Documentation for these libraries is 

distributed as part of the MAESTRO development environment [15]. 

 Note that each FFT tile is executing a separate Unix process with its own 

“memory address space.”   Along with a significant amount of book keeping and error 

detection, each of these processes does the following: 

• Receive Parameters from source process.  This includes the address of the 

shared memory buffers used to transmit blocks from the sender to the 

receiver. We use the ilib_msg_broadcast  library call to receive this 

message 

• Allocate  “ping-pong” buffers using tmc_cmem_memalign  to share with 

the “data collection” process. 

• Send a message to the data collection process via the ilib_send_msg  call 

of the address of the shared memory 

• Receive message from “source” via the ilib_receive_msg call that a 

message is ready to be collected. 

• Copy via Direct Memory Access (DMA) the first source block from the 

source using the ilib_mem_start_dma call and wait via the ilib_wait call 

for the DMA to complete the copy.  The ilib_mem_start_dma call sets up 

internal structures on the two associated tiles and uses separate 

mechanisms for the copy to take place.  The CPU is not directly involved 

in the copy process and can do other computations while the copying is 

going on.  When the copy is complete internal registers are set and the 

CPU will wait for that to happen via the ilib_wait call.   

• Start loop p – 1 times (p, number of parallel tiles, passed from the source 

process) 

o Receive message from source that another source buffer is ready 

and then start DMA copy into 2nd buffer, but do not wait. 

o Process FFT on the first buffer while the DMA copy is taking 

place using the fftwf_execute_dft_r2c call.   
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o Send a message to the data collection sink that this buffer is ready 

using ilib_send_msg 

o Using ilib_wait, wait for the DMA started above to complete 

• Process the last FFT block and let data collection sink know. 

The source and sink processes operate in a similar fashion using the same calls. 

There is a 4th process, that starts each of the source, FFTW and sink tile processes and 

establishes which specific tiles each runs on.    This process “spawns” these by filling in a 

set of parameters that describe the process to be run (via its file name), the number of 

instances of the process and the location of the instances, passing this parameter to the 

ilib_proc_spawn library call.   

Note that the ordering of the N-sample complex-frequency-amplitude blocks is 

maintained by the inclusion of the time stamp. This will permit recreation of the band-

limited sampled signal by simply taking the inverse FFT of each block. 

Next, we implemented the structure of Figure 5 to experimentally measure the 

sample rate of the parallel FFTW tiles. The C code for the FFTW was obtained from the 

Maestro source code distribution web site. [15] The single-precision FFTW was only able 

to be compiled without optimization. A version of a single tile’s code was compiled for 

each value of block size (N) tested. The code used had a separately-compiled “wisdom” 

file, used for FFTW internal optimization, for each block size tested, so that FFTW code 

would not spend time setting up its configuration. The binary code for each tile’s FFTW, 

including the ping-pong buffers is approximately eight MBytes. In the object code 

generated, each floating-point instruction appears to be padded by 4-5 no-ops. The reason 

for this apparently has to do with the communications between the floating point co-

processor and the main CPU.  Each floating point instruction takes more time than the 

completion of the message between the two entities. 

1. Verification of the Correctness of the FFTW 
The single-tile FFTW compiled code was tested for functional correctness for 

values of N that would be used in the pipeline multi-tile performance tests, namely for 

. For each value of N, a number of random data blocks 

were generated and submitted to the compiled FFTW code. Those results were compared 

to the results of Matlab® FFTs computed on the same random data blocks but using  

{ }128,256,512,1024,2048N ∈
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double precision. The results agreed within the least significant mantissa bit of our single-

precision output. As a result, we had confidence that the compiled FFTW code was 

functionally correct and that the performance data would be for a functionally correct 

FFTW. 

 

B. FFT PERFORMANCE MEASURING EXPERIMENTS 
The experiments were conducted on the Maestro Development Board, loaned to 

the Naval Postgraduate School by the U.S. Government. The board was operating at a 

clock frequency of 350 MHz. 

The software to implement the architecture of Figure 5 was created, compiled and 

loaded on the MDB and 100,000 N-word blocks were submitted to the various programs. 

The average throughput was measured and is reported for each value of N and for the 

various numbers of parallel FFT-computing tiles. The samples are each 32-bit IEEE 

standard floating point words. The pseudo-code statement of the experiment structure is 

shown in Table 2. 

Table 2. Pseudo-code for Maestro FFT Performance Test 

 
     where N is FFT block size, p is the number of FFT tiles, and R is the number of runs. 

 

f = 350,000,000
for 

for p  = 1:20
for R  = 1:20

process 100,000 N -sample FP FFTs
count Maestro cycles, C (N,p,R )

end for
compute average

compute 

end for
end for
plot family of curves for 
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C. FFT EXPERIMENTAL RESULTS 

The raw data, ( ), ,S N p  collected from the experiments is given in Appendix C. 

The results from the experiment are shown in Figure 6. In that figure are plotted 

the curves of pipeline sample rate or throughput in millions of samples per second versus 

number of FFT tiles for each of the five values of N. 

 

 

 
Figure 6. Chart of NPS Experimental Results 

Discussion: 

• At lower block sizes, 256 and 512, it appears that at some point the cost 

setting up the DMA (ilib_dma_start_dma) and processing the wait for 

termination (ilib_wait) are dominating the processing time, so that even 

though the number of tiles increases, the cost of the DMA overwhelms the 

potential benefit of the additional FFT tiles. DMA setup and wait cost is 

most likely independent of the size of the data being moved. 
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• At larger block sizes we see some increase in performance with increasing 

number of tiles beyond the 7 or 8 with 256 and 512 size blocks, but in 

these cases it appears that eventually we are seeing contention on the 

various internal buses.  Part of the reason we think that is because of the 

variability that we are seeing.  This may also be influenced by the 

arrangements we used for the tiles.  With Figure 3 as a reference, the tiles 

are labeled (x,y) where 0 ≤ 𝑥,𝑦 ≤ 6.  The source tile was placed at (1,3) 

and the sink tile at (1,4). The up to 20 FFT tiles were placed in the 

columns starting at (2,0) with the tiles used in a block of height 7 and 

width 3, through tile (4,6).  We let the library (os) determine which tiles 

within a block were used for a particular count of FFT tiles. We did not 

experiment by setting up different arrangements of tiles.   

Earlier, we discussed the results from the ISI paper [14] that appear to set an 

upper bound on the performance of the pipelined multi-tile implementation of the FFTW. 

The ISI projected performance of two of the FFT sizes that coincide with sizes that were 

used in the NPS experiments compared to the NPS results for the same FFT sizes are 

shown in Figure 7. 
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Figure 7. Projections from ISI paper compared to NPS results. 

For N = 256, the NPS experimental results significantly underperform the ISI 

projections. We believe this to be caused by the DMA overhead. For N = 2048 and for 

low tile numbers, the NPS performance is close to the upper bound, until it reaches the 

knee of the NPS curve and then internal bus contention appears to take over. 

D. APPLICATION OF RESULTS TO SDR PERFORMANCE 
The process of programming the Maestro Development Board (MDB) to 

investigate the performance of the multi-tile FFTW was much more difficult than we had 

estimated at the outset of the project. Furthermore, a working MDB was only obtained in 

September of 2013. Consequently experimental verification of the SDR performance was 

not obtained. 

Nevertheless, we can make reasonable predictions of the SDR performance from 

our FFT experiments. 

Referring back to the basic pipeline architecture of Figure 4, we see that in 

addition to computing an N-point FFT, each of the p-processing tiles must compute 
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1
2
N
+  values of 2

kX  and test each value with respect to a real threshold2. Each tile will 

then output via DMA q 16-bit frequency indices and 2q 32-bit floating point complex 

frequency real or imaginary parts, where 0 1
2
Nq≤ ≤ − .   

The computational requirements of the N-point FFT is 25 logN N  FLOPs. The 

computational requirements of the magnitude squaring and testing are 3
2
N  FLOPs and 

2
N integer3 operations. Thus, the computational requirements for each processing tile will 

increase from 25 logN N FLOPs to 25 log 2N N N+ , a modest increase indeed. 

Consequently, when the number of tiles in Figure 6 exceeds ten (the knee of those 

curves) and the performance is limited by DMA performance and bus contention, it is 

expected that the throughput for the full SDR implementation will be nearly the same as 

for the FFT alone. Furthermore, since the SDR is basically a data compression process, 

the output data rate should be much less than N 32-bit words per block, allowing a further 

modest increase in throughput. 

 

22  SSiinnccee  tthhee  ssiiggnnaall  bbeeiinngg  pprroocceesssseedd  iiss  rreeaall,,  oonnllyy  tthhee  ppoossiittiivvee  ppoorrttiioonn  ooff  tthhee  
ffrreeqquueennccyy  ssppeeccttrruumm  nneeeedd  bbee  tteesstteedd  aanndd  ddoowwnnlliinnkkeedd..  

33  SSiinnccee  IIEEEEEE  ffllooaattiinngg  ppooiinntt  nnuummbbeerrss  aarree  nnoorrmmaalliizzeedd,,  ccoommppaarriissoonnss  ooff  ffllooaattiinngg--
ppooiinntt  nnuummbbeerrss  ccaann  bbee  ppeerrffoorrmmeedd  uussiinngg  3322--bbiitt  iinntteeggeerr  aarriitthhmmeettiicc..  
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IV. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER 
STUDY 

A. CONCLUSIONS 

• A pipeline parallel multi-tile IEEE Single Precision Floating Point version of 

the FFTW was coded and tested on a Maestro Development Board with from 

1 to 20 parallel tiles computing FFTs with block sizes of 256 through 2048. 

• Pipeline throughputs for these FFTs were achieved of up to 25 million 32-bit 

samples per second. 

• Addition of the rest of the SDR code to each FFT tile should not decrease 

performance for number of tiles, 10p >  and for 512.N >   

• Higher block size operates more efficiently. 

• The pipeline architecture was successfully demonstrated. 

• Programming a single application to exploit parallelism of a multi-tile 

processor like Maestro is very difficult. 

o Because the caches are relatively small, main memory access is 

relatively expensive and inter-tile communications is not super fast, 

one has to take care in explicitly managing memory and inter-tile 

communications.  The tools to do this are available, to some extent, 

but take some understanding. In our case, we are unsure whether the 

“main loop” of the FFT algorithm fit into the cache. We would need to 

do more evaluation to determine this. 

o We depended on the compiler to take advantage of the potential built-

in instruction parallelism.  Except in a couple of cases, we were unable 

to exploit the very long instruction word parallelism directly ourselves.   

o The system provides a set of development tools and libraries. The 

current compiler has some problems, especially handling the 

optimization of single precision floating-point arithmetic.  Although 

the libraries are documented and there are tools for evaluating and 

optimizing code, understanding when to use which features of the 
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system takes some experience.  In addition, it is unclear how the use of 

the various features might interact with each other.  

B.  RECOMMENDATIONS FOR FUTURE STUDY 
The ISI paper [14] and Table 1 suggest that an upper bound on throughput of 
62.6 10 p×  samples per second might be achieved for each tile computing a 2048-point 

FFTW running under the pipeline architecture demonstrated in this study. This would 

mean that a 31-tile realization of the full SDR would potentially support a throughput of 

80 million samples per second, enabling in-space processing of 32-MHz bandwidth 

signals. The following things should be tried to seek to realize that potential 

• Verify the effect on throughput of adding the SDR functionality directly to the FFT 

tiles. Compare the performance of the alternative of adding a SDR tile in tandem to 

each FFT tile via the run_sink.c code. 

• Experiment with different mapping of functionality to physical tiles. 

• Work with ISI to optimize the NPS-developed code. 

We have considered several approaches we could take to possibly optimize the 

FFT computations on the MAESTRO board.  These include, listed in order of difficulty 

to address, but not necessarily the order of expected improvement: 

1. Compiling/Coding Optimizations; 

2. Dedicated Tiles; 

3. Geometric Optimizations;  

4. Refactoring the FFT Algorithms.   

Below we describe these in more detail.  

We think that the most improvement would come from some combination of 

Dedicated Tiles and Refactoring the FFT Algorithm.     

FFT Algorithm. The only change we made to the delivered FFTW package is to 

recompile it for single precision floating point operation.  This provided a small 

performance improvement.  We have not spent any significant time and efforts applying 

the techniques outlined in the "Optimization Guide, UG105" [15] document to the FFTW 

package or our integration code.  We would like to apply the various monitoring tools to 

analyze the performance of the FFTW package to see where the bottlenecks are.  It would 

be interesting to apply the analysis tools to the package, apply the compiler feedback-
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based optimizations and add appropriate compiler features to the code.  We are currently 

using the "ilib" interfaces for inter-tile communications and synchronization.  There are 

"intrinsic" level compiler macros that directly access hardware level instructions to 

accomplish the communications and synchronization functions. These would remove the 

ilib function call overhead.  It is not clear how much this would save but it is worth 

looking at and might provide for tighter (less latency) inter-tile communications.    

Dedicated Tiles.  We are currently using the delivered version of the Linux 

operating system. This version of the OS does not include any configuration of 

"dedicated tiles."  We would like to configure and compile a new version of the operating 

system that includes dedicated tiles to do the FFT computations.  We think this may 

provide significant performance improvements since the dedicated tiles operate with 

much less OS overhead than normal tiles, hence we may see more effective use of both 

the processor and cache.    

Geometric Optimizations.  We have only done a limited number of experiments 

on the allocation of our processes to tiles.  Our current efforts do not show a significant 

increase in overall throughput, samples per second, once the number of tiles doing FFT 

processing increases beyond around 14 or so. We are not sure why this is the case, since 

our tile-to-tile communications speed measurements indicate that we should be seeing 

better performance than that. We think part of the problem is how the assignment of 

function to specific tiles is done.  The length of the path between two communicating 

tiles increases latency and there is a potential for collisions on a network path where 

several tiles attempt to communicate over the same path simultaneously. Since we 

potentially know all the communications among processes, we should be able to find 

optimal, or at least better, arrangements of processes to tiles.   If we were to build a new 

OS version, this could tie into where we allocate the dedicated tiles.    

Refactoring The FFT Algorithm.  The FFTW implementation of the FFT 

algorithm is configured to compute an FFT block on a single tile.  We achieve our 

"throughput" by providing multiple tiles, each computing a full FFT block.  Our current 

measurements indicate that we could come close to doubling the throughput if we could 

speed up the FFT computations.  In that case the limiting factor would be the inter-tile 

communications.  One way of achieving an increase in FFT processing speed is to 

 23 



refactor the algorithm to take advantage of the MIPS/MAESTRO capabilities.   One 

approach is to "role our own" FFT implementation that still uses one tile/block but does 

not include any of the overhead needed to support the generality of the FFTW 

implementation. It can be tailored with appropriate assembly code to take advantage of 

the single precision floating point operations needed. This code could be tailored for 

exactly the block size we use and integrated into the inter-tile communications 

infrastructure.  We could apply the various analysis and optimization techniques directly 

to this code.  It is unclear, without further analysis, whether the implementation for, say, a 

1K block size would fit comfortably on a single tile and cache.  A second approach might 

be to attempt to factor the algorithm to run on multiple tiles to take advantage of the 

"butterfly" computations. This might increase the latency slightly but might make it 

easier to ensure that the computations take place entirely within the cache.  
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APPENDIX A 

This appendix contains the source code for the various tile processes that were 

used in the experiment. These files are: 

1. Makefile: Contains instructions for building the 4 programs: startdma or  
start3dma, run_sender, run_receiver and run_sink. 

2. simpledma.h: "Include file" that contains definitions of various 
macros and data types used throughout the programs. 

3. startdma: is the main driver for FFT testing. From command line arguments it 
determines how many FFT tiles to set up (run_receiver),  assigns the tiles to each 
of the programs to be run  and exits. Typical command format is: 

startdma blocksize iterations numReceivers 

where blocksize is the number of samples in one FFT block, one of (256, 
512,1024, 2048)  

iterations is the number of blocks each "receiver" will process, 
typically a value above 100000 will give relative consistent results, 
and 

numReceivers is the number of tiles used to process FFTs, 1<= 
numReceivers <= 20 

4. run_sender: is the program that generates data to be processed,  it sends a dma 
message to a run_receiver to tell it that it has a buffer to process. 

5. run_receiver:  DMAs blocks from run_sender, FFTs the blocks, and signals 
run_sink that it has a block to process. 

6. run_sink:   DMAs blocks from run_receiver for future processing (not done 
here) 

7. start3dma: is a simplified version of startdma that has only one run_receiver 
tile.  It places run_sender on tile (1,3), run_receiver on tile (2,3) and 
run_sink on tile (3,3) This was constructed for testing. 
 

1. makefile 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  
   Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */   

 
ifndef TILERA_ROOT 
$(error The 'TILERA_ROOT' environment variable is not set.) 
endif 
 
BIN = $(TILERA_ROOT)/bin/ 
FFTW_ROOT = $(TILERA_ROOT)/src/tools/opera-fftw 
LIB_ROOT = $(TILERA_ROOT)/src/tools/opera-fftw/lib 
 
CONVERTFEEDBACK = ${BIN}/tile-convert-feedback 
 
CC = $(BIN)tile-cc 
CFLAGS =  -O2 
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LDFLAGS = -static -Os -L$(TILERA_ROOT)/tile/lib -
L$(TILERA_ROOT)/tile/usr/lib -L$(LIB_ROOT) -lfftw3f -lilib -ltmc 
-lm 
 
TARGETS = startdma startudma start3dma run_sender run_receiver 
run_sink 
 
all: ${TARGETS} 
 
%:%.o 
 ${CC} $< -o $@ ${LDFLAGS}  
 
run_sender.o: run_sender.c simpledma.h 
 
run_receiver.o: run_receiver.c simpledma.h 
 
run_sink.o: run_sink.c simpledma.h 
 
startdma.o: startdma.c simpledma.h 
 
startudma.o: startudma.c simpledma.h 
 
start3dma.o: start3dma.c simpledma.h 
 
clean: 
 rm -rf *.o ${TARGETS}  
 

2. Include File – simpledma.h 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  

Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
#ifndef __SIMPLEDMA 
#define __SIMPLEDMA 
 
 
#include <ilib.h> 
#include <stdio.h> 
 
#include <tmc/cmem.h> 
#include <arch/cycle.h> 
#include <sys/time.h> 
#include <fftw3.h> 
 
 
//sending buffers between sender and receivers 
#define MESSAGE_TAG 17 
#define MESSAGE_SENT_TAG 18 
 
//sending buffers between receivers and sink 
#define MESSAGE_3_TAG 19 
#define MESSAGE_3_SENT_TAG 20 
 
// sending last receipt 
#define MESSAGE_LAST_RECEIVED 21 
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// Ranks of various processes 
#define SEND_RANK 0 
#define SINK_RANK 1 
#define FIRST_RECEIVER 2 
 
// Size of shared memory objecta. 
// blocksize is an input parameter 
 
#define BUFFERSIZE(blocksize) (size_t)(blocksize * sizeof(float)) 
 
/* 
 * Macros to "simplify" message and dma code by assuming 
 * 
 * ILIB_GROUP_SIBLINGS is always the group 
 * 
 * automagically converts variables into pointers 
 * and calculates sizes where necessary 
 *  
 * assumes that "status" is defined where necessary  
 */ 
 
//ILIB msg send 
//Assume default group 
#define SEND_MESSAGE(receiver, tag, buffer) \ 
  ilib_msg_send(ILIB_GROUP_SIBLINGS,     \ 
  receiver,      \ 
  tag,       \ 
  &buffer,      \ 
  sizeof(buffer)) 
 
// ILIB msg receive 
// assume status out and error message 
#define RECEIVE_MESSAGE(sender, tag, buffer)\ 
  ilib_msg_receive(ILIB_GROUP_SIBLINGS,     \ 
     sender,      \ 
     tag,       \ 
     &buffer,      \ 
     sizeof(buffer),     \ 
     &status) 
 
#define BROADCAST_MESSAGE(source, buffer)\ 
  ilib_msg_broadcast(ILIB_GROUP_SIBLINGS,\ 
       source,   \ 
       &buffer,   \ 
       sizeof(buffer),  \ 
       &status) 
 
#define DMA_START(destination_ptr, source_ptr, nbytes, request)

 \ 
  ilib_mem_start_dma(destination_ptr,    \ 
       source_ptr,    \ 
       nbytes,     \ 
       &request) 
 
 
typedef struct params { 
  int blocksize; 
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  int buffersize; 
  int iters; 
  float *buffer1; 
  float *buffer2; 
  int nreceivers; 
} params_t; 
 
 
typedef struct args { 
  int blocksize; 
  int iters; 
  int nreceivers; 
} args_t; 
 
#endif 
 

3. startdma.c 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  

Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
/*  

 
   USAGE: 
 
   ./startdma blocksize iterations numReceivers 
 
   where: 
         blocksize:    the sample size of the fft block to be computed,  
                one of 2^k for k in [5-11] 
 
  iterations:   the number of ffts computed by each receiver, 
                at least one 
 
  numReceivers: the number of receivers being run concurrently, 
                1<= numReceivers<=20 
 
   OUTPUT is generated by the run_sender program and is sent to 
   stdout. It is of the form: 
 
   run_sender: iters=100000, nreceivers=1, BUFFERSIZE=2048 
   run_sender: cycles = 4953052451 
   run_sender: Cycles per block transfer = 49530 
   run_sender:  Transfer Rate = 3617970 samples/sec 
 
   where: 
      iters is the number of FFTs each receiver did 
 
      nreceivers is the number of receivers (between 1 andd 20) 
 
      BUFFERSIZE is the size of the buffer needed to hold one block of 
      FFT data 
 
      cycles is the difference in the number of cycles reported at the 
      receipt of the last ack from run_sink and the number at the 
      beginning of the first send of an FFT as collected by 
      get_cycle_count 
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      cycles/block transfer = cycles / ( iters * nreceiveers ) 
 
      samples/sec = (iters * nreceivers * (BUFFERSIZE / 4)  / 
                    ( cycles * cyclesPerSecond) 
 
                   which reduces to: 
 
          (iters * nreceivers * BUFFERSIZE * cyclesPerSecond)/(4 * 
cycles) 
                   
      This provides a consistent measure of sample rate for each 
      blocksize and number of recievers. 
 
   Driver Program: spawns: 
    
   run_sender:  Program that generates packets for use  
 
   run_receiver(s): Each receiver copies source blocks from sender and  
   produces fft. There can be up to 20 receivers. 
 
   run_sink: Program to receive all the fftw data. At reciept of last 
   block it signals sender that it is done.  
 
  See simpledma.h for descriptions of the macros: 
 
  SEND_MESSAGE 
  RECEIVE MESSAGE 
 
  BROADCAST_MESSAGE 
 
*/ 
 
#include "simpledma.h" 
 
#define USAGE "USAGE: startdma blocksize iterations numReceivers" 
#define UBLOCK(b)  b == 32 || b == 64 || b == 128 || b == 256 ||\ 
    b == 512 || b == 1024 || b == 2048  
 
args_t *parseArgs(int argc, char *argv[]) 
{ 
  args_t * a = (args_t *)tmc_cmem_memalign((size_t)64, sizeof(args_t)); 
 
  if (argc != 4 ) 
    { 
      ilib_die("startdma: wrong number of args, got %d\n\t%s", 
        argc, USAGE); 
    } 
  a->blocksize = atoi(argv[1]); 
  if ( ! (UBLOCK(a->blocksize)) ) 
    { 
      ilib_die("startdma: blocksize=%d not power of 2\n\t%s", a-
>blocksize, USAGE); 
    } 
  a->iters = atoi(argv[2]); 
  if ( a->iters <= 0 ) 
    { 
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      ilib_die("startdma: iterations=%s must be positive\n%s", 
        argv[2], USAGE); 
    } 
  a->nreceivers = atoi(argv[3]); 
  if ( a->nreceivers <= 0 || a->nreceivers > 20) 
    { 
      ilib_die("startdma: number of receivers = %s must b in range 
1<=nr<20\n\t%s", 
        argv[3], USAGE); 
    } 
  return a; 
} 
 
int main(int argc, char *argv[]) 
{ 
  ilib_init(); 
  args_t *a = parseArgs(argc, argv); 
 
  const int nreceivers = a->nreceivers; 
 
  ilibProcParam pparams[3]; // send, sink, receiver 
 
  memset(pparams, 0, sizeof(pparams)); 
 
  /* 
   * run_sender   at tile 1,2 
   * run_sink     at tile 1,4 
   * run_receiver at tiles [2-4],[0-6] 
 
   */ 
 
  pparams[0].num_procs = 1; 
  pparams[0].binary_name = "run_sender"; 
  pparams[0].init_block = a; 
  pparams[0].init_size = sizeof(args_t); 
  pparams[0].tiles.x = 1; 
  pparams[0].tiles.y = 3; 
  pparams[0].tiles.width = 1; 
  pparams[0].tiles.height = 1; 
  pparams[1].num_procs = 1; 
  pparams[1].binary_name = "run_sink"; 
  pparams[1].tiles.x = 1; 
  pparams[1].tiles.y = 4; 
  pparams[1].tiles.width = 1; 
  pparams[1].tiles.height = 1; 
  pparams[2].num_procs = nreceivers; 
  pparams[2].binary_name = "run_receiver"; 
  pparams[2].tiles.x = 2; 
  pparams[2].tiles.y = 0; 
  pparams[2].tiles.width = 3; 
  pparams[2].tiles.height = 7; 
  ilibGroup spawned_procs; 
  if (ilib_proc_spawn(3, pparams, &spawned_procs) != ILIB_SUCCESS) 
    { 
      ilib_die("Failed to spawn."); 
    } 
  ilib_finish(); 
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  return 0; 
} 

 

4. run_sender.c 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  
   Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
/*  
  Program to generate data for fftw speed testing.  It is 
  expected that this program will be started via the startdma program 
and assigned to specified tile. 
 
  See simpledma.h for descriptions of the macros: 
 
  SEND_MESSAGE 
  RECEIVE MESSAGE 
  DMA_START 
  BROADCAST_MESSAGE 
 
  General flow is,  
 
  Get Parameters from command line argument set up in startdma using 
  "ilib_prog_get_init_block" 
 
  Initialize local buffers and local "Pointers" 
 
  Initialize each block to be used with (single precision) floating 
  point numbers 
 
  set up and BROADCAST paramters for run_receiver and run_sink 
processes 
   
  get current cycle_count 
 
  LOOP: (number of iterations) 
 
      LOOP: over all run_receivers: 
           SEND_MESSAGE next message to specified run_receiver that 
            message is ready for DMA 
 
  wait for last message from run_sink 
  get current cyclce_count 
 
  print out results. 
 
define DEBUG for debugging 
 
   
*/ 
 
#include "simpledma.h" 
 
 
//#define DEBUG 
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#ifdef DEBUG 
static void run_sender(args_t *a, FILE *rserr) 
 
#else  
static void run_sender(args_t *a) 
#endif 
{ 
  int i; 
  int slot; 
  int k; 
  long long start_ctr, end_ctr, cycles; 
 
  const int blocksize = a->blocksize; 
  const int iters = a->iters; 
  const int nreceivers = a->nreceivers; 
 
 
#ifdef DEBUG 
  fprintf(rserr, "Running sender with blocksize %d\n",blocksize); 
  fflush(rserr); 
#endif 
 
  // Allocate a chunk of shared memory and fill it up. 
 
  float *buffer1 = (float *) tmc_cmem_memalign((size_t)64, 
BUFFERSIZE(blocksize)); 
  if ( buffer1 == NULL) 
    { 
      ilib_die("run_sender: Unable to allocate sender buffer1 memory"); 
    } 
 
  float *buffer2 = (float *) tmc_cmem_memalign((size_t)64, 
BUFFERSIZE(blocksize)); 
  if ( buffer1 == NULL) 
    { 
      ilib_die("run_sender: Unable to allocate sender buffer2 memory"); 
    } 
 
 
  for (i = 0; i < blocksize; i++) 
    { 
      buffer1[i] = (float) i; 
      buffer2[i] = (float) i; 
    } 
 
  float  *blocks[2]; 
  blocks[0] = buffer1;   
  blocks[1] = buffer2;  // this should be "blocksize" floats 
 
   
  params_t * p = (params_t *)tmc_cmem_memalign((size_t) 64, 
sizeof(params_t)); 
 
  p->blocksize = blocksize; 
  p->buffersize=BUFFERSIZE(blocksize); 
  p->iters = iters; 
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  p->buffer1 = buffer1; 
  p->buffer2 = buffer2; 
  p->nreceivers = nreceivers; 
  // Before allowing the receive to access the shared memory, we must 
  // guarantee that all of the writes from the loop above have 
  // completed.  Without this call, the receiving process might read a 
  // stale value from the shared_memory array. 
 
  // Send the memory address. 
 
  ilibStatus status; 
  BROADCAST_MESSAGE(SEND_RANK, p ); 
  if (status.error != ILIB_SUCCESS) 
    { 
      ilib_die("run_sender: unable to broadcast param message"); 
    } 
 
#ifdef DEBUG 
  fprintf(rserr, "run_sender: broadcast parameters address, %x\n", p); 
  fflush(rserr); 
#endif 
 
  start_ctr = get_cycle_count(); 
  for ( i = 0; i< iters; i++) 
    { 
      slot = i % 2; 
      blocks[slot][0] = i; 
      blocks[slot][blocksize-1] = i; 
      ilib_mem_fence(); 
      for (k = 0; k < nreceivers; k++) 
 { 
   SEND_MESSAGE(FIRST_RECEIVER + k, MESSAGE_SENT_TAG,i); 
 
#ifdef DEBUG 
   fprintf(rserr, "run_sender:  send buffer %d  to receiver %d 
ready\n", i, k); 
   fflush(rserr); 
#endif 
 } 
    } 
 
  long long rcv_end_ctr; 
  RECEIVE_MESSAGE(SINK_RANK, MESSAGE_LAST_RECEIVED, rcv_end_ctr); 
 
  end_ctr = get_cycle_count(); 
  cycles = end_ctr - start_ctr; 
  printf("run_sender: iters=%d, nreceivers=%d, BUFFERSIZE=%d\n", 
  p->iters, nreceivers, BUFFERSIZE(blocksize)); 
  printf("run_sender: cycles = %lld\n", cycles); 
  long long cyclesPerBlock = cycles/(p->iters * nreceivers);  
  printf("run_sender: Cycles per block transfer = %lld\n", 
cyclesPerBlock); 
 
  // do arithmetic this way to ensure no overflow 
 
  // This is the number taken from  
  // cat < /proc/cpuinfo  
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  // Unclear whether this is "real" or not 
  const unsigned long long cyclesPerSecond = 350000000L; 
 
  // divide by 4 to get samples (each sample is a real single precision 
float 
  const unsigned long long transferRate =   
    ((unsigned long long)(p->iters) *  
     (unsigned long long)nreceivers * 
     (unsigned long long)BUFFERSIZE(blocksize) * cyclesPerSecond)/ 
    (unsigned long long)cycles/4; 
 
  printf("run_sender:  Transfer Rate = %llu samples/sec\n", 
  transferRate); 
 
} 
 
int main(void) 
{ 
  ilib_init(); 
  int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS); 
  if ( my_rank != SEND_RANK) 
    { 
      ilib_die("send_sender:  rank = %d, wrong.", my_rank); 
    } 
  args_t *a; 
  size_t a_size = 0; 
  a = ilib_proc_get_init_block(&a_size); 
 
#ifdef DEBUG 
  FILE *rserr= fopen("run_sender_errors", "w"); 
  fprintf(rserr, "run_sender: Read a, got blocksize=%d, iters=%d, 
nreceivers=%d\n", 
   a->blocksize, a->iters, a->nreceivers); 
  fflush(rserr); 
#endif 
 
  if (a_size != sizeof(args_t)) 
    { 
      ilib_die("run_sender: size of args is wrong"); 
    } 
#ifdef DEBUG 
  run_sender(a,rserr); 
#else 
  run_sender(a); 
#endif 
   
  ilib_finish(); 
  return 0; 
} 

 

5. run_receiver.c 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  
   Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
/* 
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  program to compute FFTW's reveived via DMA from run_sender.  It is 
  expected that this program will be started via the startdma 
  program. Multiple copies of this program may be started.  All copies 
  dma blocks to process from the same source and make available fftw 
  processed blocks for the single "sink" to dma blocks for post 
  processing.  
 
  See simpledma.h for descriptions of the macros: 
 
  SEND_MESSAGE 
  RECEIVE MESSAGE 
  DMA_START 
  BROADCAST_MESSAGE 
 
  General flow is,  
 
  Get Parameters from run_sender (BROADCAST_MESSAGE) 
 
  Initialize local buffers and local "Pointers" 
   
  Tell run_sink where the local buffer to copy from is  
   
  get first received message from run_sender 
  start DMA of buffer from run_sender 
  wait for DMA to finish 
  LOOP: 
     RECEIVE_MESSAGE from run_sender that message is ready 
     start DMA message to local memory 
     fftw_previous buffer (while DMA is happening) 
     SEND sink message that  buffer ready for DMA 
     wait for started DMA to finish 
 
DEBUG is for debugging 
MEMCPY is for testing message passing without doing FFTW 
PRINT_RECEIVER_OUT is for further debugging help. 
 
*/ 
 
//#define MEMCPY 
 
//#define DEBUG 
 
//#define PRINT_RECEIVER_OUT 
//#define MEMCPY 
 
#include "simpledma.h" 
 
/*  
   fftw requires a "plan".  The plan depends on the "processor" and 
some  
   tests that fftw makes to determine the "best" approaches.  Plans 
   can be saved, partially,  in "wisdom files".  If such a file is 
   available then fftw can be instructed to use it. If    the Wisdeom 
   file is not available, then fftw will generate a plan.  This takes 
   some time, measured in seconds.   
 
   Note that we are assuming that all the cores that will be doing 
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   fftw can use the same "wisdeom" file and same plan.  I have *not* 
   tested that this is, in fact, the case. 
 
   Indications are that buffer movement is a bigger problem. 
*/ 
 
#ifndef MEMCPY 
#define WISFILENAME 100 
fftwf_plan setupWisdom(float *in, float *out, int blocksize) 
{ 
  char wis[WISFILENAME]; 
  snprintf(wis,WISFILENAME, "Wisdomf_%d", blocksize); 
  FILE *wfd = fopen(wis, "r"); 
  if (wfd != NULL) 
  { 
    fftwf_import_wisdom_from_file(wfd); 
  } 
 
  fftwf_plan p = fftwf_plan_dft_r2c_1d(blocksize, in, 
           (fftwf_complex *)out, FFTW_EXHAUSTIVE); 
 
  if (wfd == NULL) 
    { 
      wfd = fopen(wis, "w"); 
      fftwf_export_wisdom_to_file(wfd); 
      fclose(wfd); 
    } 
 
  return p; 
} 
 
#pragma frequency_hint INIT setupWisdom 
#endif 
void run_receiver(void) 
{ 
  ilibStatus status; 
  float *sink_blocks[2]; 
 
  int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS); 
 
  params_t *p; 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank=%d, waiting for param list\n", 
my_rank); 
  fflush(stderr); 
#endif 
 
  // Receive the params object address 
 
  BROADCAST_MESSAGE(SEND_RANK, p);  
 
  if (status.error != ILIB_SUCCESS || 
      status.size != sizeof(p)  ) 
  { 
    ilib_die("run_receiver: Failed to receive params from sender"); 
  } 
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#ifdef DEBUG 
  fprintf(stderr, "run_receiver: got params pointer %x\n", p); 
  fflush(stderr); 
#endif 
 
  float  *buffer1 =  p->buffer1;     /* source  buffer address */ 
  float  *buffer2 =  p->buffer2;     /* source  buffer address */ 
  const int blocksize = p->blocksize; 
  const int iters = p->iters; 
  float  local_buf[2][blocksize];    /* destinatin buffers */ 
  float *src_blocks[2]; /* these are set to point to the source buffers 
*/ 
  ilibRequest requests[2]; 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank=%d, got buffer length of %d\n", 
   my_rank, blocksize); 
  fflush(stderr); 
#endif 
 
  // buffersize is size of 1 buffer (1024*sizeof(float), sink is double 
buffered 
 
  float *sink_buffer = (float *)tmc_cmem_memalign((size_t) 64, 2 * p-
>buffersize  ); 
  if (sink_buffer == NULL) 
    { 
      ilib_die("Unable to allocate transfer buffer\n"); 
    } 
 
  // Tell sink about sink buffer 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank = %d, sending sink_buffer 
address=%x to sink\n", 
   my_rank, sink_buffer);  /* careful here */ 
  fflush(stderr); 
#endif 
 
  SEND_MESSAGE(SINK_RANK, MESSAGE_3_TAG, sink_buffer); 
 
  // set address of src blocks, can only do this after buffer address 
  // has been assigned. 
  src_blocks[0] = buffer1; 
  src_blocks[1] = buffer2; 
 
  sink_blocks[0] = sink_buffer; 
  sink_blocks[1] = sink_buffer + blocksize; 
 
  int  i; 
  int  j; 
  int  slot; 
  int  prevSlot; 
 
#ifdef PRINT_RECEIVER_OUT 
  long long start_ctr, end_ctr, cycles; 
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  start_ctr = get_cycle_count(); 
#endif 
 
  slot = 0; 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank %d, waiting for first (0th) 
message for sender\n", 
   my_rank); 
  fflush(stderr); 
#endif 
 
#ifndef MEMCPY 
  fftwf_plan plan = setupWisdom(buffer1, sink_buffer, blocksize); 
#endif 
 
  RECEIVE_MESSAGE(SEND_RANK, MESSAGE_SENT_TAG, j); 
 
  if (status.error != ILIB_SUCCESS || 
      status.size != sizeof(j) ) 
    { 
      ilib_die("run_receiver: Failed ilib_msg_receive of buffer 
ready"); 
    } 
 
  if (j != 0) 
    { 
      ilib_die("Receiver got first message out of sequence\n"); 
    } 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank %d,  Starting first dma read 
DMA\n", 
   my_rank); 
  fflush(stderr); 
#endif 
 
  if (DMA_START(local_buf[slot], src_blocks[slot], 
BUFFERSIZE(blocksize), requests[slot]) 
      < 0) 
    { 
      ilib_die("Failed 1st DMA."); 
    } 
       
  if (ilib_wait(&requests[slot], &status) < 0) 
    { 
      ilib_die("run_receiver: failed on first message receive"); 
    } 
   
  int prev; 
  i = 0; 
  while ( i < iters - 1 ) 
    { 
 
#ifdef DEBUG 
      fprintf(stderr, "run_receiver: rank=%d, expect %d, 
src__blocks[slot] = %f\n,", 
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       my_rank, i, src_blocks[slot][0]); 
      fflush(stderr); 
#endif 
 
      prev = i; 
      prevSlot = slot; 
       
      i++; 
      slot = i % 2; 
 
      RECEIVE_MESSAGE(SEND_RANK, MESSAGE_SENT_TAG, j); 
 
      if (status.error != ILIB_SUCCESS || 
   status.size != sizeof(j) ) 
 { 
   ilib_die("Failed ilib_msg_receive of buffer ready"); 
 } 
 
      if (j != i) 
 { 
   ilib_die( "Receiver got message %d, expected message %d\n", j, 
i); 
 } 
       
#ifdef DEBUG 
      fprintf(stderr, "run_receiver: rank=%d, starting DMA of message 
%d\n", 
       my_rank, i); 
      fflush(stderr); 
#endif 
 
      if (DMA_START(local_buf[slot], src_blocks[slot], 
BUFFERSIZE(blocksize), requests[slot]) 
   < 0) 
 { 
   ilib_die("Failed 1st DMA."); 
 } 
 
#ifdef MEMCPY 
      memcpy(sink_blocks[prevSlot], src_blocks[prevSlot], 
BUFFERSIZE(blocksize)); 
#else 
      fftwf_execute_dft_r2c(plan, src_blocks[prevSlot], (fftwf_complex 
*)sink_blocks[prevSlot]); 
#endif 
 
 
      SEND_MESSAGE(SINK_RANK, MESSAGE_3_SENT_TAG, prev); 
       
#ifdef DEBUG 
      fprintf(stderr, "run_receiver: rank = %d, sink_block[0] = %f\n", 
       my_rank, sink_blocks[prevSlot][0]); 
      fflush(stderr); 
#endif        
 
      if (ilib_wait(&requests[slot], &status) < 0) 
 { 
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   ilib_die("Failed from ilib_wait()."); 
 } 
    } 
  i = i--; 
 
#ifdef DEBUG 
  fprintf(stderr, "run_received: rank=%d, expect %d, src__blocks[0] = 
%f\n,", 
   my_rank, i, src_blocks[i % 2][0]); 
  fflush(stderr); 
#endif 
 
#ifdef MEMCPY 
  memcpy(sink_blocks[i %2 ], src_blocks[i %2], BUFFERSIZE(blocksize)); 
#else 
  fftwf_execute_dft_r2c(plan, src_blocks[i%2], (fftwf_complex 
*)sink_blocks[i%2]); 
#endif 
 
#ifdef DEBUG 
  fprintf(stderr, "run_receiver: rank=%d, expect %d, src__blocks[slot] 
= %f\n,", 
   my_rank, i, src_blocks[slot][0]); 
  fflush(stderr); 
 
  fprintf(stderr, "run_receiver: rank=%d, sending msg %d ready\n", 
my_rank, i); 
  fflush(stderr); 
#endif 
 
  SEND_MESSAGE(SINK_RANK, MESSAGE_3_SENT_TAG, i); 
 
  if (status.error != ILIB_SUCCESS ) 
    { 
      ilib_die("run_receiver: fail on end of run on receiver %d\n", 
my_rank); 
    } 
 
#ifdef PRINT_RECEIVER_OUT 
  end_ctr = get_cycle_count(); 
  cycles = end_ctr - start_ctr; 
  printf("run_receiver: rank=%d, Block size is %d bytes\n", my_rank, 
BUFFERSIZE(blocksize)); 
  printf("run_receiver: rank=%d, last block expect %d : block[0] = %f, 
block[%d] = %f\n", 
  my_rank, i, local_buf[(i) % 2][0], i, local_buf[(i) % 
2][blocksize-1]); 
  long long blocksPerSec = 400000000L / (cycles/iters);   
  printf("run_receiver: rank=%d, Cycles per transfer = %lld\n", 
my_rank, cycles/iters); 
  printf("run_receiver: rank=%d, Transfer Rate = %lld bytes/sec\n", 
  my_rank, blocksPerSec * BUFFERSIZE(blocksize)); 
#endif 
} 
 
int main(void) 
{ 
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  ilib_init(); 
  const int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS); 
 
#ifdef DEBUG 
  FILE *rsinkerr = fopen("run_sink_errors", "w"); 
  fprintf(stderr, "run_receiver: rank=%d, waiting for param list\n", 
my_rank); 
  fflush(stderr); 
#endif 
 
  if (my_rank == SINK_RANK || my_rank == SEND_RANK) 
    { 
      ilib_die("run_receiver: got rank = %d, wrong for receiver\n", 
my_rank); 
    } 
  run_receiver(); 
 
#ifdef MEMCPY 
  printf("Run Receiver used MEMCPY\n"); 
#else 
  //  printf("Run Receiver used fftw\n"); 
#endif 
 
  ilib_finish(); 
  return 0; 
} 

 

6. run_sink.c 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  
   Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
/*  
   run_sink: Program to receive all the computed fft's.  
 
 
   The Flow is: 
 
   RECEIVE BROADCAST message from run_sender with paramters (buffer 
size). 
 
   Setup local buffers 
 
   receiver buffer addresses from run_senders buffers 
 
   LOOP (iterations): 
     for each receiver, receiver message that message is ready 
                        dma message from receiver 
 
  SEND_MESSAGE that we are done. 
 
 
  Note that we are not trying to do multiple dma's symultaneously. 
  since we are not doing processing here.  This would probably need to 
  be fixed. 
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   See simpledma.h for descriptions of the macros: 
 
   SEND_MESSAGE 
   RECEIVE MESSAGE 
   DMA_START 
   BROADCAST_MESSAGE 
 
define PRINT_SINK_OUT to test output 
define DEBUG for debugging 
 
*/ 
 
#include "simpledma.h" 
 
//#define PRINT_SINK_OUT  
//#define DEBUG 
 
void run_sink( 
#ifndef DEBUG 
       void 
#else 
       FILE *rsinkerr 
#endif 
       ) 
{ 
  int  i; 
  int  j; 
  int  k; 
  int  slot; 
  long long end_ctr; 
 
#ifdef PRINT_SINK_OUT 
  long long start_ctr, cycles; 
#endif 
 
  int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS); 
 
  if (my_rank != SINK_RANK) 
    { 
      ilib_die("Got rank %d != SINK_RANK = %d\n", my_rank, SINK_RANK); 
    } 
  params_t *p; 
 
#ifdef DEBUG 
  fprintf(rsinkerr, "run_sink: rank=%d, waiting for param list\n", 
my_rank); 
  fflush(rsinkerr); 
#endif 
 
  ilibStatus status; 
  // Receive paramaters from sender via broadcast 
  BROADCAST_MESSAGE(SEND_RANK, p); 
  if (status.error != ILIB_SUCCESS || 
      status.size != sizeof(p)  ) 
  { 
    ilib_die("Failed receive of param broadcast"); 
  } 
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#ifdef DEBUG 
  fprintf(rsinkerr, "run_sink: got parameter address %x\n", p); 
  fflush(rsinkerr); 
#endif 
 
  const int blocksize = p->blocksize; 
  const int iters = p->iters; 
  const int nreceivers = p->nreceivers; 
 
  float  *buffer;     /* source  buffer address */ 
  float  local_buf[2][blocksize];    /* destinatin buffers */ 
  float *src_blocks[nreceivers][2]; /* these are set to point to the 
source buffers */ 
  ilibRequest requests[2]; 
 
  for ( k = 0; k < nreceivers; k++)  
    { 
 
#ifdef DEBUG 
      fprintf(rsinkerr,"run_sink: waiting buffer address from receiver 
%d\n", k); 
      fflush(rsinkerr); 
#endif 
      RECEIVE_MESSAGE(k+FIRST_RECEIVER, MESSAGE_3_TAG, buffer); 
      if (status.error != ILIB_SUCCESS || 
   status.size != sizeof(float)  ) 
 { 
   ilib_die("run_sink: Failed to receive buffer addr from receiver 
%d", k); 
 } 
 
#ifdef DEBUG 
      fprintf(rsinkerr,"run_sink: GOT buffer address from receiver 
%d\n", k); 
      fflush(rsinkerr); 
#endif 
 
      src_blocks[k][0] = buffer; 
      src_blocks[k][1] = buffer + blocksize; 
 
#ifdef DEBUG 
      fprintf(rsinkerr, "run_sink: SET source blocsk address for 
receiver %d\n", k); 
      fflush(rsinkerr); 
#endif 
 
    } 
 
#ifdef DEBUG 
  fprintf(rsinkerr, "run_sink: set buffers ok\n"); 
  fflush(rsinkerr); 
#endif 
 
#ifdef PRINT_SINK_OUT 
  start_ctr = get_cycle_count(); 
#endif 
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  for (i = 0; i < iters; i++) 
    { 
      slot = i % 2; 
      for (k = 0; k < nreceivers; k++) 
 { 
#ifdef DEBUG 
   fprintf(rsinkerr, "run_sink: awating %d from receiver %d\n", 
    i, k); 
   fflush(rsinkerr); 
#endif 
   RECEIVE_MESSAGE(k+FIRST_RECEIVER, MESSAGE_3_SENT_TAG,j); 
   if (status.error != ILIB_SUCCESS || 
       status.size != sizeof(j) ) 
     { 
       ilib_die("run_sink: Failed ilib_msg_receive of buffer ready 
from receiver %d", 
         k); 
     } 
 
   if (j != i) 
     { 
       ilib_die("Sink got message %d from receiver %d, expected 
message %d\n", 
         j, k, i); 
     } 
       
   if (DMA_START(local_buf[slot], src_blocks[k][slot], 
   BUFFERSIZE(blocksize), requests[slot]) < 0) 
     { 
       ilib_die("run_sink, Failed 1st DMA from receiver %d.", k); 
     } 
   if (ilib_wait(&requests[slot], &status) < 0) 
     { 
       ilib_die("Failed from ilib_wait()."); 
     } 
#ifdef DEBUG 
   fprintf(rsinkerr, "run_sink: Received buffer %d from receiver 
%d, block[0] = %f\n", 
    j, k, src_blocks[k][slot][0]); 
   fflush(rsinkerr); 
#endif 
 } 
    } 
 
  end_ctr = get_cycle_count(); 
  SEND_MESSAGE(SEND_RANK, MESSAGE_LAST_RECEIVED, end_ctr); 
 
#ifdef PRINT_SINK_OUT 
  cycles = end_ctr - start_ctr; 
  printf("Sink Block size is %d bytes\n", blocksize * sizeof(float)); 
  for (k = 0; k < nreceivers; k++) 
    { 
      printf("run_sink, receiver %d, expected  %d : block[0] = %f, 
block[%d] = %f\n", 
      k, (i-1), local_buf[slot][0], i-1, 
local_buf[slot][blocksize-1]); 
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    } 
  printf("run_sink: iters=%d, nreceivers=%d, BUFFERSIZE=%d\n", 
  iters, nreceivers, BUFFERSIZE(blocksize)); 
  printf("run_sink: cycles = %lld\n", cycles); 
  long long cyclesPerBlock = cycles/(iters * nreceivers);  
  printf("run_sink: Cycles per transfer = %lld\n", cyclesPerBlock); 
  printf("Sink Transfer Rate = %lld bytes/sec\n",  
  ((long long)iters * (long long)nreceivers * 
   (long long)BUFFERSIZE(blocksize) * 400000000L)/cycles); 
#endif 
} 
 
int main(void) 
{ 
  ilib_init(); 
  const int my_rank = ilib_group_rank(ILIB_GROUP_SIBLINGS); 
 
#ifdef DEBUG 
  FILE *rsinkerr = fopen("run_sink_errors", "w"); 
  fprintf(rsinkerr, "run_sink: starting process with rank %d\n", 
   my_rank); 
  fflush(rsinkerr); 
#endif 
 
  if (my_rank != SINK_RANK) 
    { 
      ilib_die("run_sink: got rank = %d, wrong for sink\n", my_rank); 
    } 
  run_sink( 
#ifdef DEBUG 
  rsinkerr 
#endif 
    ); 
 
  ilib_finish(); 
  return 0; 
} 

 

7. start3dma.c 
/* Written by George W. Dinolt, Naval Postgraduate School, Monterey, CA  
   Last Change Rev: 120, Last Changed Date: Fri, 22 Nov. 2013 */ 
 
#include "simpledma.h" 
 
 
#define USAGE "USAGE: start3dma blocksize iterations" 
#define UBLOCK(b)  b == 32 || b == 64 || b == 128 || b == 256 ||\ 
    b == 512 || b == 1024 || b == 2048 || 4096 
 
args_t *parseArgs(int argc, char *argv[]) 
{ 
  args_t * a = (args_t *)tmc_cmem_memalign((size_t)64, sizeof(args_t)); 
 
  if (argc != 3 ) 
    { 
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      ilib_die("simple3dma: wrong number of args, got %d\n\t%s", 
        argc, USAGE); 
    } 
  a->blocksize = atoi(argv[1]); 
  if ( ! (UBLOCK(a->blocksize)) ) 
    { 
      ilib_die("simple3dma: blocksize=%d not power of 2\n\t%s", a-
>blocksize, USAGE); 
    } 
  a->iters = atoi(argv[2]); 
  if ( a->iters <= 0 ) 
    { 
      ilib_die("start3dma: terations=%s must be positive\n%s", 
        argv[2], USAGE); 
    } 
  a->nreceivers = 1;  // fixed size 
  return a; 
} 
 
int main(int argc, char *argv[]) 
{ 
  ilib_init(); 
  args_t *a = parseArgs(argc, argv); 
 
  ilibProcParam pparams[3]; // send, sink, receiver 
 
  memset(pparams, 0, sizeof(pparams)); 
 
  pparams[0].num_procs = 1; 
  pparams[0].binary_name = "run_sender"; 
  pparams[0].init_block = a; 
  pparams[0].init_size = sizeof(args_t); 
  pparams[0].tiles.x = 1; 
  pparams[0].tiles.y = 3; 
  pparams[0].tiles.width = 1; 
  pparams[0].tiles.height = 1; 
  pparams[1].num_procs = 1; 
  pparams[1].binary_name = "run_sink"; 
  pparams[1].tiles.x = 3; 
  pparams[1].tiles.y = 3; 
  pparams[1].tiles.width = 1; 
  pparams[1].tiles.height = 1; 
  pparams[2].num_procs = 1; 
  pparams[2].binary_name = "run_receiver"; 
  pparams[2].tiles.x = 2; 
  pparams[2].tiles.y = 3; 
  pparams[2].tiles.width = 1; 
  pparams[2].tiles.height = 1; 
  ilibGroup spawned_procs; 
  if (ilib_proc_spawn(3, pparams, &spawned_procs) != ILIB_SUCCESS) 
    { 
      ilib_die("Failed to spawn."); 
    } 
  ilib_finish(); 
  return 0; 

} 
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APPENDIX B. 

Data from the experiments is tabulated in the following text files.  

The format for the data is illustrated below: 

nreceivers is the number of parallel FFT tiles, p. 

cycles is the number of cycles, ( ),C N p . 

Transfer Rate is the net sample rate of the pipeline FP FFT. 

1. Data for N = 128 
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=512 
run_sender: cycles = 2035656968 
run_sender: Cycles per block transfer = 20356 
run_sender:  Transfer Rate = 2200763 samples/sec 
------- 
run_sender: iters=100000, nreceivers=2, BUFFERSIZE=512 
run_sender: cycles = 2199992035 
run_sender: Cycles per block transfer = 10999 
run_sender:  Transfer Rate = 4072742 samples/sec 
------- 
run_sender: iters=100000, nreceivers=3, BUFFERSIZE=512 
run_sender: cycles = 2385886892 
run_sender: Cycles per block transfer = 7952 
run_sender:  Transfer Rate = 5633125 samples/sec 
------- 
run_sender: iters=100000, nreceivers=4, BUFFERSIZE=512 
run_sender: cycles = 2287643473 
run_sender: Cycles per block transfer = 5719 
run_sender:  Transfer Rate = 7833388 samples/sec 
------- 
run_sender: iters=100000, nreceivers=5, BUFFERSIZE=512 
run_sender: cycles = 2566313364 
run_sender: Cycles per block transfer = 5132 
run_sender:  Transfer Rate = 8728474 samples/sec 
------- 
run_sender: iters=100000, nreceivers=6, BUFFERSIZE=512 
run_sender: cycles = 3107507609 
run_sender: Cycles per block transfer = 5179 
run_sender:  Transfer Rate = 8650019 samples/sec 
------- 
run_sender: iters=100000, nreceivers=7, BUFFERSIZE=512 
run_sender: cycles = 3254658571 
run_sender: Cycles per block transfer = 4649 
run_sender:  Transfer Rate = 9635419 samples/sec 
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------- 
run_sender: iters=100000, nreceivers=8, BUFFERSIZE=512 
run_sender: cycles = 3729559390 
run_sender: Cycles per block transfer = 4661 
run_sender:  Transfer Rate = 9609714 samples/sec 
------- 
run_sender: iters=100000, nreceivers=9, BUFFERSIZE=512 
run_sender: cycles = 4042357031 
run_sender: Cycles per block transfer = 4491 
run_sender:  Transfer Rate = 9974378 samples/sec 
------- 
run_sender: iters=100000, nreceivers=10, BUFFERSIZE=512 
run_sender: cycles = 4545065821 
run_sender: Cycles per block transfer = 4545 
run_sender:  Transfer Rate = 9856842 samples/sec 
------- 
run_sender: iters=100000, nreceivers=11, BUFFERSIZE=512 
run_sender: cycles = 4931927446 
run_sender: Cycles per block transfer = 4483 
run_sender:  Transfer Rate = 9992036 samples/sec 
------- 
run_sender: iters=100000, nreceivers=12, BUFFERSIZE=512 
run_sender: cycles = 5401540548 
run_sender: Cycles per block transfer = 4501 
run_sender:  Transfer Rate = 9952716 samples/sec 
------- 
run_sender: iters=100000, nreceivers=13, BUFFERSIZE=512 
run_sender: cycles = 5799887319 
run_sender: Cycles per block transfer = 4461 
run_sender:  Transfer Rate = 10041574 samples/sec 
------- 
run_sender: iters=100000, nreceivers=14, BUFFERSIZE=512 
run_sender: cycles = 6384539279 
run_sender: Cycles per block transfer = 4560 
run_sender:  Transfer Rate = 9823731 samples/sec 
------- 
run_sender: iters=100000, nreceivers=15, BUFFERSIZE=512 
run_sender: cycles = 6702693130 
run_sender: Cycles per block transfer = 4468 
run_sender:  Transfer Rate = 10025820 samples/sec 
------- 
run_sender: iters=100000, nreceivers=16, BUFFERSIZE=512 
run_sender: cycles = 7217814757 
run_sender: Cycles per block transfer = 4511 
run_sender:  Transfer Rate = 9930983 samples/sec 
------- 
run_sender: iters=100000, nreceivers=17, BUFFERSIZE=512 
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run_sender: cycles = 7310522304 
run_sender: Cycles per block transfer = 4300 
run_sender:  Transfer Rate = 10417860 samples/sec 
------- 
run_sender: iters=100000, nreceivers=18, BUFFERSIZE=512 
run_sender: cycles = 7787227030 
run_sender: Cycles per block transfer = 4326 
run_sender:  Transfer Rate = 10355419 samples/sec 
------- 
run_sender: iters=100000, nreceivers=19, BUFFERSIZE=512 
run_sender: cycles = 8376538489 
run_sender: Cycles per block transfer = 4408 
run_sender:  Transfer Rate = 10161715 samples/sec 
------- 
run_sender: iters=100000, nreceivers=20, BUFFERSIZE=512 
run_sender: cycles = 8921883984 
run_sender: Cycles per block transfer = 4460 
run_sender:  Transfer Rate = 10042721 samples/sec 
------- 

2. Data for N = 256 
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=1024 
run_sender: cycles = 2791582107 
run_sender: Cycles per block transfer = 27915 
run_sender:  Transfer Rate = 3209649 samples/sec 
------- 
run_sender: iters=100000, nreceivers=2, BUFFERSIZE=1024 
run_sender: cycles = 3098993319 
run_sender: Cycles per block transfer = 15494 
run_sender:  Transfer Rate = 5782522 samples/sec 
------- 
run_sender: iters=100000, nreceivers=3, BUFFERSIZE=1024 
run_sender: cycles = 3181487439 
run_sender: Cycles per block transfer = 10604 
run_sender:  Transfer Rate = 8448878 samples/sec 
------- 
run_sender: iters=100000, nreceivers=4, BUFFERSIZE=1024 
run_sender: cycles = 3141524320 
run_sender: Cycles per block transfer = 7853 
run_sender:  Transfer Rate = 11408474 samples/sec 
------- 
run_sender: iters=100000, nreceivers=5, BUFFERSIZE=1024 
run_sender: cycles = 3385977912 
run_sender: Cycles per block transfer = 6771 
run_sender:  Transfer Rate = 13231037 samples/sec 
------- 
run_sender: iters=100000, nreceivers=6, BUFFERSIZE=1024 
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run_sender: cycles = 3500426890 
run_sender: Cycles per block transfer = 5834 
run_sender:  Transfer Rate = 15358126 samples/sec 
------- 
run_sender: iters=100000, nreceivers=7, BUFFERSIZE=1024 
run_sender: cycles = 3387679430 
run_sender: Cycles per block transfer = 4839 
run_sender:  Transfer Rate = 18514148 samples/sec 
------- 
run_sender: iters=100000, nreceivers=8, BUFFERSIZE=1024 
run_sender: cycles = 3814325558 
run_sender: Cycles per block transfer = 4767 
run_sender:  Transfer Rate = 18792313 samples/sec 
------- 
run_sender: iters=100000, nreceivers=9, BUFFERSIZE=1024 
run_sender: cycles = 4190221692 
run_sender: Cycles per block transfer = 4655 
run_sender:  Transfer Rate = 19244805 samples/sec 
------- 
run_sender: iters=100000, nreceivers=10, BUFFERSIZE=1024 
run_sender: cycles = 4610221058 
run_sender: Cycles per block transfer = 4610 
run_sender:  Transfer Rate = 19435076 samples/sec 
------- 
run_sender: iters=100000, nreceivers=11, BUFFERSIZE=1024 
run_sender: cycles = 5057583597 
run_sender: Cycles per block transfer = 4597 
run_sender:  Transfer Rate = 19487567 samples/sec 
------- 
run_sender: iters=100000, nreceivers=12, BUFFERSIZE=1024 
run_sender: cycles = 5497382446 
run_sender: Cycles per block transfer = 4581 
run_sender:  Transfer Rate = 19558399 samples/sec 
------- 
run_sender: iters=100000, nreceivers=13, BUFFERSIZE=1024 
run_sender: cycles = 5949133240 
run_sender: Cycles per block transfer = 4576 
run_sender:  Transfer Rate = 19579322 samples/sec 
------- 
run_sender: iters=100000, nreceivers=14, BUFFERSIZE=1024 
run_sender: cycles = 6330117808 
run_sender: Cycles per block transfer = 4521 
run_sender:  Transfer Rate = 19816376 samples/sec 
------- 
run_sender: iters=100000, nreceivers=15, BUFFERSIZE=1024 
run_sender: cycles = 6842435283 
run_sender: Cycles per block transfer = 4561 
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run_sender:  Transfer Rate = 19642129 samples/sec 
------- 
run_sender: iters=100000, nreceivers=16, BUFFERSIZE=1024 
run_sender: cycles = 7447425160 
run_sender: Cycles per block transfer = 4654 
run_sender:  Transfer Rate = 19249605 samples/sec 
------- 
run_sender: iters=100000, nreceivers=17, BUFFERSIZE=1024 
run_sender: cycles = 7703084873 
run_sender: Cycles per block transfer = 4531 
run_sender:  Transfer Rate = 19773896 samples/sec 
------- 
run_sender: iters=100000, nreceivers=18, BUFFERSIZE=1024 
run_sender: cycles = 8176055917 
run_sender: Cycles per block transfer = 4542 
run_sender:  Transfer Rate = 19725892 samples/sec 
------- 
run_sender: iters=100000, nreceivers=19, BUFFERSIZE=1024 
run_sender: cycles = 8684910868 
run_sender: Cycles per block transfer = 4571 
run_sender:  Transfer Rate = 19601813 samples/sec 
------- 
run_sender: iters=100000, nreceivers=20, BUFFERSIZE=1024 
run_sender: cycles = 9243195020 
run_sender: Cycles per block transfer = 4621 
run_sender:  Transfer Rate = 19387235 samples/sec 
------- 

3. Data for N = 512 
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=2048 
run_sender: cycles = 4978489886 
run_sender: Cycles per block transfer = 49784 
run_sender:  Transfer Rate = 3599485 samples/sec 
------- 
run_sender: iters=100000, nreceivers=2, BUFFERSIZE=2048 
run_sender: cycles = 5418243924 
run_sender: Cycles per block transfer = 27091 
run_sender:  Transfer Rate = 6614689 samples/sec 
------- 
run_sender: iters=100000, nreceivers=3, BUFFERSIZE=2048 
run_sender: cycles = 5920562990 
run_sender: Cycles per block transfer = 19735 
run_sender:  Transfer Rate = 9080217 samples/sec 
------- 
run_sender: iters=100000, nreceivers=4, BUFFERSIZE=2048 
run_sender: cycles = 6454451171 
run_sender: Cycles per block transfer = 16136 
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run_sender:  Transfer Rate = 11105514 samples/sec 
------- 
run_sender: iters=100000, nreceivers=5, BUFFERSIZE=2048 
run_sender: cycles = 7026632496 
run_sender: Cycles per block transfer = 14053 
run_sender:  Transfer Rate = 12751485 samples/sec 
------- 
run_sender: iters=100000, nreceivers=6, BUFFERSIZE=2048 
run_sender: cycles = 7819453536 
run_sender: Cycles per block transfer = 13032 
run_sender:  Transfer Rate = 13750321 samples/sec 
------- 
run_sender: iters=100000, nreceivers=7, BUFFERSIZE=2048 
run_sender: cycles = 5847600257 
run_sender: Cycles per block transfer = 8353 
run_sender:  Transfer Rate = 21451534 samples/sec 
------- 
run_sender: iters=100000, nreceivers=8, BUFFERSIZE=2048 
run_sender: cycles = 6946443559 
run_sender: Cycles per block transfer = 8683 
run_sender:  Transfer Rate = 20637898 samples/sec 
------- 
run_sender: iters=100000, nreceivers=9, BUFFERSIZE=2048 
run_sender: cycles = 8156943181 
run_sender: Cycles per block transfer = 9063 
run_sender:  Transfer Rate = 19772112 samples/sec 
------- 
run_sender: iters=100000, nreceivers=10, BUFFERSIZE=2048 
run_sender: cycles = 9334719083 
run_sender: Cycles per block transfer = 9334 
run_sender:  Transfer Rate = 19197149 samples/sec 
------- 
run_sender: iters=100000, nreceivers=11, BUFFERSIZE=2048 
run_sender: cycles = 10201284233 
run_sender: Cycles per block transfer = 9273 
run_sender:  Transfer Rate = 19323057 samples/sec 
------- 
run_sender: iters=100000, nreceivers=12, BUFFERSIZE=2048 
run_sender: cycles = 8381768798 
run_sender: Cycles per block transfer = 6984 
run_sender:  Transfer Rate = 25655682 samples/sec 
------- 
run_sender: iters=100000, nreceivers=13, BUFFERSIZE=2048 
run_sender: cycles = 9330323210 
run_sender: Cycles per block transfer = 7177 
run_sender:  Transfer Rate = 24968052 samples/sec 
------- 
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run_sender: iters=100000, nreceivers=14, BUFFERSIZE=2048 
run_sender: cycles = 9984176673 
run_sender: Cycles per block transfer = 7131 
run_sender:  Transfer Rate = 25127760 samples/sec 
------- 
run_sender: iters=100000, nreceivers=15, BUFFERSIZE=2048 
run_sender: cycles = 10672738943 
run_sender: Cycles per block transfer = 7115 
run_sender:  Transfer Rate = 25185662 samples/sec 
------- 
run_sender: iters=100000, nreceivers=16, BUFFERSIZE=2048 
run_sender: cycles = 11346573180 
run_sender: Cycles per block transfer = 7091 
run_sender:  Transfer Rate = 25269303 samples/sec 
------- 
run_sender: iters=100000, nreceivers=17, BUFFERSIZE=2048 
run_sender: cycles = 11737141434 
run_sender: Cycles per block transfer = 6904 
run_sender:  Transfer Rate = 25955212 samples/sec 
------- 
run_sender: iters=100000, nreceivers=18, BUFFERSIZE=2048 
run_sender: cycles = 12770581530 
run_sender: Cycles per block transfer = 7094 
run_sender:  Transfer Rate = 25258051 samples/sec 
------- 
run_sender: iters=100000, nreceivers=19, BUFFERSIZE=2048 
run_sender: cycles = 13412111301 
run_sender: Cycles per block transfer = 7059 
run_sender:  Transfer Rate = 25386010 samples/sec 
------- 
run_sender: iters=100000, nreceivers=20, BUFFERSIZE=2048 
run_sender: cycles = 14639811187 
run_sender: Cycles per block transfer = 7319 
run_sender:  Transfer Rate = 24481190 samples/sec 
------- 

4. Data for N = 1024 
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=4096 
run_sender: cycles = 9903822734 
run_sender: Cycles per block transfer = 99038 
run_sender:  Transfer Rate = 3618804 samples/sec 
------- 
run_sender: iters=100000, nreceivers=2, BUFFERSIZE=4096 
run_sender: cycles = 10839464034 
run_sender: Cycles per block transfer = 54197 
run_sender:  Transfer Rate = 6612873 samples/sec 
------- 
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run_sender: iters=100000, nreceivers=3, BUFFERSIZE=4096 
run_sender: cycles = 12168398157 
run_sender: Cycles per block transfer = 40561 
run_sender:  Transfer Rate = 8836002 samples/sec 
------- 
run_sender: iters=100000, nreceivers=4, BUFFERSIZE=4096 
run_sender: cycles = 13697124748 
run_sender: Cycles per block transfer = 34242 
run_sender:  Transfer Rate = 10466430 samples/sec 
------- 
run_sender: iters=100000, nreceivers=5, BUFFERSIZE=4096 
run_sender: cycles = 15811185628 
run_sender: Cycles per block transfer = 31622 
run_sender:  Transfer Rate = 11333748 samples/sec 
------- 
run_sender: iters=100000, nreceivers=6, BUFFERSIZE=4096 
run_sender: cycles = 17417132283 
run_sender: Cycles per block transfer = 29028 
run_sender:  Transfer Rate = 12346464 samples/sec 
------- 
run_sender: iters=100000, nreceivers=7, BUFFERSIZE=4096 
run_sender: cycles = 15139625774 
run_sender: Cycles per block transfer = 21628 
run_sender:  Transfer Rate = 16571083 samples/sec 
------- 
run_sender: iters=100000, nreceivers=8, BUFFERSIZE=4096 
run_sender: cycles = 12741296888 
run_sender: Cycles per block transfer = 15926 
run_sender:  Transfer Rate = 22503203 samples/sec 
------- 
run_sender: iters=100000, nreceivers=9, BUFFERSIZE=4096 
run_sender: cycles = 15022229028 
run_sender: Cycles per block transfer = 16691 
run_sender:  Transfer Rate = 21472179 samples/sec 
------- 
run_sender: iters=100000, nreceivers=10, BUFFERSIZE=4096 
run_sender: cycles = 14879141915 
run_sender: Cycles per block transfer = 14879 
run_sender:  Transfer Rate = 24087410 samples/sec 
------- 
run_sender: iters=100000, nreceivers=11, BUFFERSIZE=4096 
run_sender: cycles = 14892368820 
run_sender: Cycles per block transfer = 13538 
run_sender:  Transfer Rate = 26472618 samples/sec 
------- 
run_sender: iters=100000, nreceivers=12, BUFFERSIZE=4096 
run_sender: cycles = 15735538711 
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run_sender: Cycles per block transfer = 13112 
run_sender:  Transfer Rate = 27331762 samples/sec 
------- 
run_sender: iters=100000, nreceivers=13, BUFFERSIZE=4096 
run_sender: cycles = 20960949070 
run_sender: Cycles per block transfer = 16123 
run_sender:  Transfer Rate = 22228001 samples/sec 
------- 
run_sender: iters=100000, nreceivers=14, BUFFERSIZE=4096 
run_sender: cycles = 22012817294 
run_sender: Cycles per block transfer = 15723 
run_sender:  Transfer Rate = 22793992 samples/sec 
------- 
run_sender: iters=100000, nreceivers=15, BUFFERSIZE=4096 
run_sender: cycles = 22325582293 
run_sender: Cycles per block transfer = 14883 
run_sender:  Transfer Rate = 24079999 samples/sec 
------- 
run_sender: iters=100000, nreceivers=16, BUFFERSIZE=4096 
run_sender: cycles = 21544904761 
run_sender: Cycles per block transfer = 13465 
run_sender:  Transfer Rate = 26616037 samples/sec 
------- 
run_sender: iters=100000, nreceivers=17, BUFFERSIZE=4096 
run_sender: cycles = 24711916375 
run_sender: Cycles per block transfer = 14536 
run_sender:  Transfer Rate = 24655311 samples/sec 
------- 
run_sender: iters=100000, nreceivers=18, BUFFERSIZE=4096 
run_sender: cycles = 24265874835 
run_sender: Cycles per block transfer = 13481 
run_sender:  Transfer Rate = 26585482 samples/sec 
------- 
run_sender: iters=100000, nreceivers=19, BUFFERSIZE=4096 
run_sender: cycles = 25443068580 
run_sender: Cycles per block transfer = 13391 
run_sender:  Transfer Rate = 26764067 samples/sec 
------- 
run_sender: iters=100000, nreceivers=20, BUFFERSIZE=4096 
run_sender: cycles = 29676664231 
run_sender: Cycles per block transfer = 14838 
run_sender:  Transfer Rate = 24153658 samples/sec 
------- 

5. Data for N = 2048 
run_sender: iters=100000, nreceivers=1, BUFFERSIZE=8192 
run_sender: cycles = 21957583650 
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run_sender: Cycles per block transfer = 219575 
run_sender:  Transfer Rate = 3264475 samples/sec 
------- 
run_sender: iters=100000, nreceivers=2, BUFFERSIZE=8192 
run_sender: cycles = 25786960848 
run_sender: Cycles per block transfer = 128934 
run_sender:  Transfer Rate = 5559398 samples/sec 
------- 
run_sender: iters=100000, nreceivers=3, BUFFERSIZE=8192 
run_sender: cycles = 29117933559 
run_sender: Cycles per block transfer = 97059 
run_sender:  Transfer Rate = 7385139 samples/sec 
------- 
run_sender: iters=100000, nreceivers=4, BUFFERSIZE=8192 
run_sender: cycles = 30139314757 
run_sender: Cycles per block transfer = 75348 
run_sender:  Transfer Rate = 9513155 samples/sec 
------- 
run_sender: iters=100000, nreceivers=5, BUFFERSIZE=8192 
run_sender: cycles = 32404723357 
run_sender: Cycles per block transfer = 64809 
run_sender:  Transfer Rate = 11060116 samples/sec 
------- 
run_sender: iters=100000, nreceivers=6, BUFFERSIZE=8192 
run_sender: cycles = 35749882192 
run_sender: Cycles per block transfer = 59583 
run_sender:  Transfer Rate = 12030249 samples/sec 
------- 
run_sender: iters=100000, nreceivers=7, BUFFERSIZE=8192 
run_sender: cycles = 34799440259 
run_sender: Cycles per block transfer = 49713 
run_sender:  Transfer Rate = 14418622 samples/sec 
------- 
run_sender: iters=100000, nreceivers=8, BUFFERSIZE=8192 
run_sender: cycles = 25518142889 
run_sender: Cycles per block transfer = 31897 
run_sender:  Transfer Rate = 22471854 samples/sec 
------- 
run_sender: iters=100000, nreceivers=9, BUFFERSIZE=8192 
run_sender: cycles = 35749429667 
run_sender: Cycles per block transfer = 39721 
run_sender:  Transfer Rate = 18045602 samples/sec 
------- 
run_sender: iters=100000, nreceivers=10, BUFFERSIZE=8192 
run_sender: cycles = 36182445261 
run_sender: Cycles per block transfer = 36182 
run_sender:  Transfer Rate = 19810711 samples/sec 
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------- 
run_sender: iters=100000, nreceivers=11, BUFFERSIZE=8192 
run_sender: cycles = 34904862567 
run_sender: Cycles per block transfer = 31731 
run_sender:  Transfer Rate = 22589402 samples/sec 
------- 
run_sender: iters=100000, nreceivers=12, BUFFERSIZE=8192 
run_sender: cycles = 38809087133 
run_sender: Cycles per block transfer = 32340 
run_sender:  Transfer Rate = 22163881 samples/sec 
------- 
run_sender: iters=100000, nreceivers=13, BUFFERSIZE=8192 
run_sender: cycles = 39326853112 
run_sender: Cycles per block transfer = 30251 
run_sender:  Transfer Rate = 23694751 samples/sec 
------- 
run_sender: iters=100000, nreceivers=14, BUFFERSIZE=8192 
run_sender: cycles = 42482567546 
run_sender: Cycles per block transfer = 30344 
run_sender:  Transfer Rate = 23621924 samples/sec 
------- 
run_sender: iters=100000, nreceivers=15, BUFFERSIZE=8192 
run_sender: cycles = 41767561157 
run_sender: Cycles per block transfer = 27845 
run_sender:  Transfer Rate = 25742465 samples/sec 
------- 
run_sender: iters=100000, nreceivers=16, BUFFERSIZE=8192 
run_sender: cycles = 45359091641 
run_sender: Cycles per block transfer = 28349 
run_sender:  Transfer Rate = 25284456 samples/sec 
------- 
run_sender: iters=100000, nreceivers=17, BUFFERSIZE=8192 
run_sender: cycles = 47660219939 
run_sender: Cycles per block transfer = 28035 
run_sender:  Transfer Rate = 25567653 samples/sec 
------- 
run_sender: iters=100000, nreceivers=18, BUFFERSIZE=8192 
run_sender: cycles = 48612930279 
run_sender: Cycles per block transfer = 27007 
run_sender:  Transfer Rate = 26541086 samples/sec 
------- 
run_sender: iters=100000, nreceivers=19, BUFFERSIZE=8192 
run_sender: cycles = 50663798563 
run_sender: Cycles per block transfer = 26665 
run_sender:  Transfer Rate = 26881521 samples/sec 
------- 
run_sender: iters=100000, nreceivers=20, BUFFERSIZE=8192 
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run_sender: cycles = 51987647456 
run_sender: Cycles per block transfer = 25993 
run_sender:  Transfer Rate = 27575781 samples/sec 
------- 
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